If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+2x-820=0
a = 3; b = 2; c = -820;
Δ = b2-4ac
Δ = 22-4·3·(-820)
Δ = 9844
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9844}=\sqrt{4*2461}=\sqrt{4}*\sqrt{2461}=2\sqrt{2461}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{2461}}{2*3}=\frac{-2-2\sqrt{2461}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{2461}}{2*3}=\frac{-2+2\sqrt{2461}}{6} $
| 5+c/3=-15 | | −30y+48=3 | | 5000xYx4=6500 | | 5=3x^2-7 | | s+15=-10 | | 3y(2y+3)=2y+3 | | 3y(2y+3)=2y+3. | | s+15=-5 | | 3/4(x-2)=(1/2)x | | (x+7)∙3=39 | | 6y^2+7y+3=0 | | 10y+7−4y=−5+6y+22. | | m+28=13 | | 24x^2=640 | | n²-3=39 | | 3+7y+6y^2=0 | | (24x^2)-640=0 | | 7(x+8)=147 | | (X-7)^2+(y+2)^2=40 | | 2(0.25x-3)=1.5-2 | | 27.5=12.33+3x | | X^2+(y-5)^2=7 | | 3(2x-1)=1/(2x-1) | | (3x+6)+(7x-14)=90 | | (3x+6)+(7x-14)+90=180 | | 2x-1(2x-1(3))=0 | | 2x-1(2x-1(3)))=0 | | 24=q8 | | (x-3)=2(3x-2) | | (4n+6)=60 | | 6(m+18)=2(m+5) | | 0.5(x-6)=20 |